	-	_	 	 	 	 	
Reg. No.:							

Question Paper Code: 31269

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fifth Semester

Computer Science and Engineering

MA 2265 — DISCRETE MATHEMATICS

(Regulation 2008)

(Common to PTMA 2265 — Discrete Mathematics for B.E. (Part – Time) Third Semester — Computer Science and Engineering — Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the contrapositive, the converse, and the inverse of the conditional statement? "If you work hard then you will be rewarded."
- 2. Find the truth table for the statement $P \to Q$.
- 3. How many different words are there in the word MATHEMATICS?
- 4. State the pigeon hole principle.
- 5. Give an example of a graph which is Eulerian but not Hamiltonian.
- 6. Define a connected graph and a disconnected graph with examples.
- 7. Prove or Disprove, "Every subgroup of an abelian group is normal".
- 8. Give an example of a ring which is not a field.
- 9. Is it true that every bounded lattice is complemented? Justify your answer.
- 10. When is a lattice said to be a Boolean Algebra?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Prove that $((p \lor q) \land \neg \neg p \land \neg q) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$ is a tautology. (8)

(ii) Show that
$$(p \to q) \land (r \to s), (q \to t) \land (s \to u), \exists (t \land u)$$
 and $(p \to r) \Rightarrow \exists p$. (8)

Or

- (b) (i) Show that $\forall x (p(x) \lor q(x)) \Rightarrow \forall x p(x) \lor \exists x q(x)$ using the indirect method. (8)
 - (ii) Write the symbolic form and negate the following statements:
 - (1) Every one who is healthy can do all kinds of work.
 - (2) Some people are not admired by every one.
 - (3) Every one should help his neighbors or his neighbors will not help him.
 - (4) Every one agrees with some one and some one agrees with every one. (8)
- 12. (a) (i) Use mathematical induction to prove that every integer $n \ge 2$ is either a prime or product of primes. (8)
 - (ii) What is the maximum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade if there are five possible grades A, B, C, D and F? (8)

Or

- (b) (i) Suppose that there are 9 faculty members in the mathematics department and 11 in the computer science department. How many ways are there to select a committee to develop a discrete mathematics course at a school if the committee is to consist of three faculty members from the mathematics department and four from the computer science department? (8)
 - (ii) Use generating functions to solve the recurrence relation $a_n+3a_{n-1}-4a_{n-2}=0, n\geq 2$ with the initial condition $a_0=3, a_1=-2$. (8)

13.	(a)	(i)	Prove that the number of odd degree vertices in any graph is even.
		(ii)	Are the simple graphs with the following adjacency matrices isomorphic? (10)
			[0 1 0 0 0 1]
			1 0 1 0 1 0 1 1
			0 1 0 1 0 1 0 1 0 1 0 1 1 0
			0 0 1 0 1 0 0 0 1 0 1 0
			0 1 0 1 0 1 0 1 0 0 1 1 0 1
		*	$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$
			Or
	(b)	(i)	If G is self complementary graph, then prove that G has $n \equiv 0$ (or) 1 (mod 4) vertices. (6)
		(ii)	If G is a connected simple graph with n vertices with $n \ge 3$, such
	- 2		that the degree of every vertex in G is at least $\frac{n}{2}$, then prove that
			G has Hamilton cycle. (10)
14.	(a)	(i)	Prove that in a finite group, order of any subgroup divides the order of the group. (10)
		(ii)	Prove that intersection of two normal subgroups of a group $(G, *)$ is a normal subgroup of a group $(G, *)$. (6)
			\mathbf{Or}
	(b)	(i)	Prove that every finite group of order n is isomorphic to a permutation group of degree n . (10)
		(ii)	Let $(G, *)$ and (H, Δ) be two groups and $g:(G, *) \rightarrow (H, \Delta)$ be group
	100		homomorphism. Then prove that the Kernel of g is normal subgroup of $(G, *)$.
15.	(a)	(i)	Show that in a lattice if $a \le b \le c$ then
	, -	16	$(1) a \oplus b = b * c \text{ and}$
			$(2) (a*b) \oplus (b*c) = b = (a \oplus b)*(a \oplus c) $ (6)
		(ii)	Prove that every chain with atleast three elts is distributive lattice, but not complemented. (10)
	-		\mathbf{Or}
	(b)	(i)	Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is a Boolean homomorphism. (8)

In any Boolean algebra, show that

(a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a). (8)